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a b s t r a c t

The problem that arises during the movement of the shoreline in a sedimentary ocean basin is a moving-
boundary problem with variable latent heat. A numerical method is presented for the solution of this
problem. The differential equations governing the above process are converted into initial value problem
of vector–matrix form. The time function is approximated by Chebyshev series and the operational
matrix of integration is applied. The solution of the problem is then found in terms of Chebyshev poly-
nomials of the second kind. The solution is utilized iteratively in the interface equation to determine time
taken to attain a given shoreline position. The numerical results are obtained using Mathematica soft-
ware and are compared graphically with the values obtained from a published analytical solution.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An interesting moving-boundary problem, related to the move-
ment of the shoreline in a sedimentary ocean basin (a shoreline
problem), occurs in the field of geological science. In 2000, Swen-
son et al. [3] utilized an analogy with one-phase melting and devel-
oped a mathematical model for movement of shoreline in a
sedimentary basin in response to changes in sediment line flux,
tectonic subsidence of earth’s crust and sea level change. This
problem is different from the standard one-phase melting and
freezing problems because in shoreline problem, latent heat is a
function of space and time. Recently, an analytical similarity solu-
tion of a Stefan problem with variable latent heat (a limit case of
the shoreline model) has been presented by Voller et al. [4]. Later,
Capart et al. [12] has presented some important and practical gen-
eralizations of the analytical solution presented by Voller et al. [4].
Analytical solutions of moving-boundary problems are difficult to
obtain except for a limited number of special cases [1,2].

Due to difficulties in obtaining analytical solutions, there has
been extensive development of numerical methods which in many
cases more practical in solving moving-boundary problems. There
are three main numerical approaches of solving the moving-
boundary problems. The first is fixed grid methods [5,6] where a
grid of nodes remain fixed in space and the boundary is tracked
by use of an auxiliary variable, e.g., the enthalpy method. The sec-
ond approach is deforming grid methods [3,7,8], in which a line of
node is located on the moving-boundary and, as the solution
evolves, the space grid deforms to ensure that these nodes remain
on the boundary. The last approach is hybrid methods [10] which
ll rights reserved.
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employ element of both fixed and deforming grids, e.g., local front
tracking.

In 2006, Voller et al. [13] has presented a novel moving-bound-
ary problem related to shoreline movement in a sedimentary basin,
which was solved by enthalpy method. In this article he has shown
how shoreline problem can be solved by using the same numerical
tools which were already used for solving classical stefan’s melting
problem.

The objective of this paper is to present a numerical solution of
a moving-boundary problem with variable latent heat [4]. The dif-
ferential equations governing the process (sediment transport and
deposition) are converted into an initial value problem of vector–
matrix form. The time function is approximated by Chebyshev ser-
ies of the second kind and the operational matrix of integration is
applied [11] on it. The solution of initial value problem is utilized
iteratively in the interface condition to determine the time taken
for a given shoreline position. A brief sensitivity study is also
performed.
2. The shoreline problem

Shoreline problem involves the shoreline propagation in a sed-
imentary basin due to a sediment line flux, tectonic subsidence of
the earth’s crust, and sea level change. A schematic cross section of
such a basin indicating the variables is shown in Fig. 1 (Voller et al.
[4]).

The governing differential equations for the sediment transport
and deposition in a sub-aerial, fluvial domain (a net depositional
river basin) is given by the diffusion equation [3,4,9].
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Nomenclature

g height of sediment above datum, m
t time
x space variable, m
b height of the earth’s crust (basement) above datum, m
z(t) ocean level above datum, m
s(t) shoreline position, m
u(t) position of intersection between off-shore sediment

wedge and basement, m
�q Prescribed sediment line flux m3m�1t�1

c a constant
a slope of off-shore sediment wedge
b slope of basement
m diffusion coefficient, m2t�1

s generalized time
k step length, m
F(t) Chebyshev vector
fj Chebyshev polynomial of second kind
T transpose of matrix
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where g(x, t) is the height of the sediment above a datum, m is the
effective fluvial diffusivity, which depends primarily on the water
discharge in the river system, and b is height of earth’s crust. The
boundary conditions on (1) are

m
@g
@x

����
x¼0
¼ ��qðtÞ and gðs; tÞ ¼ zðtÞ ð2Þ

where �q is a prescribed sediment line flux and z(t) is the ocean level
above the datum.

A condition for the advance or retreat of the shoreline in an off-
shore submarine domain [4,6] is given by
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with the initial condition sð0Þ ¼ 0 ð4Þ

where a is slope of the off-shore sediment wedge and u(t) is the lat-
eral position where the toe of the submarine sediment wedge inter-
sects the ocean basement.

A specific case [4] for above shoreline model involves a shore-
line problem with a fixed line flux, a constant ocean level (z = 0),
no tectonic subsidence of the earth’s crust, and a constant sloping
basement b < a. This scenario is a reasonable approximation for
some modern continental margins. Under this specific case the
governing equation, boundary conditions and initial condition
(1)–(4) reduce to following one-phase moving-boundary problem
with variable latent heat
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with initial and boundary conditions

gðx;0Þ ¼ 0; m
@g
@x

����
x¼0
¼ ��qðtÞ ð6Þ
Fig. 1. A cross-section of sedimentary ocean basin.
and

gðs; tÞ ¼ 0 ð7Þ

The additional conditions on the moving interface are
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¼ cs
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and

sð0Þ ¼ 0 ð9Þ

where a(u-s)=abs
a�b ¼ cs and c is a constant.

3. Solution of the problem

Describing the space variable x by xi = ik, (i = 0,1,2, . . .,n + 1) and
using central difference, Eqs. (5)–(7) can be written in vector–
matrix form as

dg
dt
¼ Agþ B ð10Þ

where

g ¼ ½g1;g2; . . . ;gn�
T

B ¼ m
k2

k�q
m
; 0; . . . ; 0

� �T

A ¼ m
k2

�1 1 0 0 . . . 0 0 0
1 �2 1 0 . . . 0 0 0
0 1 �2 1 . . . 0 0 0
�� �� ��
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0 0 0 0 . . . 1 �2 1
0 0 0 0 . . . 0 1 �2

2
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3
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Integrating Eq. (10) and using the initial condition g(0) = 0, gives

gðtÞ ¼ A
Z t

0
gðyÞdyþ B

Z t

0
1:dy ð11Þ

The approximation of g(t) by Chebyshev series gives:

gðtÞ ¼ DFðtÞ ð12Þ
1 ¼ EFðtÞ ð13Þ

where
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E ¼ ½1; 0;0; 0 . . . ; 0�1�m



Table 1
The exact value, numerical value, absolute error and relative error at a = 1.7.

b S Exact value tA Numerical value tN Absolute error |tA � tN| Relative error |tA � tN|/tA

0.5 0.1 0.005110 0.0035 0.001610 0.31506
0.2 0.021768 0.0192 0.001568 0.11790
0.3 0.048978 0.0475 0.001478 0.03020
0.4 0.087100 0.0862 0.000900 0.01030
0.5 0.136051 0.1377 0.000649 0.00477
0.6 0.195910 0.1906 0.000531 0.00271
0.7 0.276670 0.2762 0.000470 0.00169

1.0 0.1 0.014400 0.0096 0.00484 0.33333
0.2 0.056522 0.0529 0.00362 0.06408
0.3 0.129424 0.1271 0.00232 0.01796
0.4 0.230087 0.2279 0.00219 0.00951
0.5 0.359500 0.3575 0.00198 0.00551
0.6 0.517700 0.5160 0.00167 0.00322
0.7 0.704640 0.7032 0.00144 0.00204

1.5 0.1 0.066119 0.0429 0.02322 0.35117
0.2 0.264750 0.2445 0.02025 0.07649
0.3 0.595680 0.5841 0.01158 0.01944
0.4 1.058990 1.0495 0.00951 0.00898
0.5 1.654670 1.6528 0.00190 0.00115
0.6 2.382720 2.3813 0.00145 0.00061
0.7 3.243150 3.2423 0.00084 0.00026

Table 2
The exact value, numerical value, absolute error and relative error at b = 0.5.

a S Exact value tA Numerical value tN Absolute error |tA � tN| Relative error |tA � tN|/tA

1.0 0.1 0.007011 0.0050 0.002011 0.28683
0.2 0.028043 0.0261 0.001943 0.06929
0.3 0.063097 0.0618 0.000297 0.00471
0.4 0.112173 0.1119 0.000273 0.00243
0.5 0.175270 0.1751 0.000170 0.00097
0.6 0.252389 0.2523 0.000089 0.00035
0.7 0.343529 0.3435 0.000029 0.00008

1.4 0.1 0.005442 0.0037 0.001174 0.32010
0.2 0.026101 0.0246 0.001501 0.07220
0.3 0.052383 0.0509 0.001483 0.02831
0.4 0.093125 0.0918 0.001325 0.01422
0.5 0.145508 0.1445 0.001008 0.00682
0.6 0.204531 0.2043 0.000176 0.00086
0.7 0.286052 0.2860 0.000052 0.00018

1.7 0.1 0.005442 0.0035 0.001942 0.35680
0.2 0.021768 0.0192 0.002568 0.11797
0.3 0.048980 0.0475 0.001480 0.03021
0.4 0.087075 0.0862 0.000875 0.01004
0.5 0.136055 0.1358 0.000255 0.00187
0.6 0.195920 0.1958 0.000120 0.00061
0.7 0.266670 0.2666 0.000007 0.00026
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and

F ¼ ½f0; f1; f2; . . . ; fm�1�T1�m

fj is Chebyshev polynomial of second kind such that

f0 ¼ 1
f1 ¼ 2� 4ðt=sÞ
f2 ¼ 3� 16ðt=sÞ þ 16ðt=sÞ2

..

.

..

.

fjþ1 ¼ 2½1� 2ðt=sÞ�fj0 � fj�1

Moreover, integration of the Chebyshev vector givesZ t

0
FðyÞdy ¼ PFðtÞ ð14Þ
where P is the operational matrix of integration and

P ¼ s
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1

2ðm�1Þ 0 0 0 0 . . . 0 1
4ðm�1Þ 0 � 1

4ðm�1Þ
1

2m 0 0 0 0 . . . 0 0 1
4m 0

2
666666666664

3
777777777775

m�m

Substituting (12) and (13) in Eq. (11) and using (14), we obtained

DF ¼ ADPF þ BEPF

Since the Chebyshev polynomial are independent, equating the
coefficients of F(t) gives the following set of Linear algebraic
equations
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Fig. 2. Dependence of interface position on time for different basement slope.
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Fig. 3. Dependence of interface location on time for different slope of off-shore
sediment wedge.
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Fig. 4. Dependence of shoreline position on time for different sediment line flux.
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D� ADP ¼ BEP ð15Þ

Now, we look for the time in which the interface moves a dis-
tance s. The region (0,s) is divided into n + 1 equal parts or sub re-
gions. Replacing the space derivative by using backward operator
in the interface condition (6) and integrating it with s(0) = 0, we
obtain
S2ðtÞ ¼ 2m
ck

Z t

0
giðyÞdy

� �
; ð16Þ

where i = 0,1, . . .,n
By assuming a fixed s > t, the elements of the matrix D whose

order is considered as n � 3 (considering m = 3) are computed from
equation (15). Replacing gi by

P3
j¼1dijfj�1 and putting s = t in Eq.

(16), we obtain the first approximation as

t1 ¼
s2ck

2v di1 þ 1
3 di3

� � ð17Þ

which gives the required time in which the shoreline moves at a
distance s.

Again choosing s the same as above calculated t1, the new
elements of matrix D are calculated from (15). These new ele-
ments of matrix D are used in Eq. (17) to evaluate new estimated
t2. This iterative process is continued until the difference be-
tween two successive values of t becomes smaller than a pre-
scribed accuracy.

4. Numerical results and discussion

In this section, numerical results of time for various values of
shoreline position (s) are calculated for different slope of basement
(b) and off-shore sediment (a). All the numerical computations have
been done for fixed line flux �q ¼ 1m3=mt;v ¼ 2m2=t and are carried
out using Mathematica software. Table 1 shows the approximate
numerical solution tN, exact solution tA at a = 1.7, b = 0.5, 1.0, 1.5
and the absolute error and the relative error between them. Table
2 shows the tN, tA at b = 0.5, a = 1.0, 1.4, 1.7 and the absolute error
and the relative error between them. From the Tables we observed
that our approximate numerical method is in good agreement with
the exact solution. Not surprisingly, the accuracy of the result can be
improved by increasing the value of m.

It is seen from Fig. 2 that for a fixed value of slope of off-shore
sediment wedge (a = 1.7), if the value of b increases
(b = 0.5,1.0,1.5), the movement of shoreline position decreases. In
this case the sedimentation process becomes slow. The physical
interpretation of increasing b implies that the sediments will be
deposited towards the land side which causes the increase of the
thickness of earlier sediments. As a consequence of this there will
be least shifting of the contact point towards the land side and sed-
imentation process will be slower. Further for higher values of b
(i.e., when b is closed to a), the downward warping of the sedimen-
tary strata becomes very prominent and eventually the point of
contact moves slowly towards the land and as a result sedimenta-
tion process becomes more slow.

Fig. 3 depicts that for a fixed value of basement slope (b = 0.5),
the increase in a (a = 1.0,1.4,1.7) represents more sediments will
be deposited near the contact point which causes the advancement
of the shoreline position towards the sea and as a result the sedi-
mentation process becomes fast.

It is also seen from Fig. 4 that for fixed values of a = 1.7,
b = 1.0, v = 2.0, if the sediment line flux �q increases
ð�q ¼ 1:0;1:5;2:0Þ, the movement of the shoreline position in-
creases towards sea side with formation of inclined strata along
the off-shore sediment wedge.

5. Conclusion

The utility of this numerical technique can be attributed to its
simplistic approach in seeking the solution of the moving-bound-
ary problem. In view of rapid convergence of the Chebyshev series
of second kind, only a few terms of the series are needed to give
satisfactory results [11]. It is often necessary to take moderately
small step size to avoid undesirable numerical oscillation. The pro-
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cedure as described in the present study will be applicable to linear
and nonlinear moving-boundary problems.
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